Source code for nfnets.sgd_agc

import torch
from torch.optim.optimizer import Optimizer, required
from torch import optim, nn

from nfnets.utils import unitwise_norm

[docs]class SGD_AGC(Optimizer): r"""Implements stochastic gradient descent (optionally with momentum). Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning`__ AGC from NFNets: https://arxiv.org/abs/2102.06171.pdf. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): learning rate momentum (float, optional): momentum factor (default: 0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dampening (float, optional): dampening for momentum (default: 0) nesterov (bool, optional): enables Nesterov momentum (default: False) dampening (float, optional): dampening for momentum (default: 0.01) clipping (float, optional): clipping value (default: 1e-3) eps (float, optional): eps (default: 1e-3) Example: >>> optimizer = torch.optim.SGD_AGC(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() .. note:: The implementation has been adapted from the PyTorch framework and the official NF-Nets paper. The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks. Considering the specific case of Momentum, the update can be written as .. math:: \begin{aligned} v_{t+1} & = \mu * v_{t} + g_{t+1}, \\ p_{t+1} & = p_{t} - \text{lr} * v_{t+1}, \end{aligned} where :math:`p`, :math:`g`, :math:`v` and :math:`\mu` denote the parameters, gradient, velocity, and momentum respectively. This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form .. math:: \begin{aligned} v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\ p_{t+1} & = p_{t} - v_{t+1}. \end{aligned} The Nesterov version is analogously modified. """ def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, clipping=1e-2, eps=1e-3): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError( "Invalid weight_decay value: {}".format(weight_decay)) if clipping < 0.0: raise ValueError("Invalid clipping value: {}".format(clipping)) if eps < 0.0: raise ValueError("Invalid eps value: {}".format(eps)) defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, clipping=clipping, eps=eps) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( "Nesterov momentum requires a momentum and zero dampening") super(SGD_AGC, self).__init__(params, defaults) def __setstate__(self, state): super(SGD_AGC, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False)
[docs] @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue param_norm = torch.max(unitwise_norm( p.detach()), torch.tensor(group['eps']).to(p.device)) grad_norm = unitwise_norm(p.grad.detach()) max_norm = param_norm * group['clipping'] trigger = grad_norm > max_norm clipped_grad = p.grad * \ (max_norm / torch.max(grad_norm, torch.tensor(1e-6).to(grad_norm.device))) p.grad.detach().copy_(torch.where(trigger, clipped_grad, p.grad)) for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue d_p = p.grad if weight_decay != 0: d_p = d_p.add(p, alpha=weight_decay) if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.clone( d_p).detach() else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(buf, alpha=momentum) else: d_p = buf p.add_(d_p, alpha=-group['lr']) return loss